Needing to vent

Whilst renovating my house, I have always tried to use products which are efficient. Over the years I have tried various vent covers for both the dryer, and bathrooms. I don’t like the one with plastic flappers, or louvers – one basic word describes them – garbageThe main purposes of a vent cover is to (i) allow for unrestricted air flow out, and (ii) stop air coming in, i.e. backdrafting. If used for a dryer, it should also not catch lint that somehow escapes the lint trap in the dryer (like seriously can someone not design a lint trap that actually catches all the lint?). Oh, and it should be strong, and maybe not just white, other colours would be nice.

So the first vent cover I installed over 10 years ago was the insulated foam cap, the Broan EV100 EcoVent, shown in Fig.1. This vent uses a “floating ball check valve” to block the vent when there is no air flow, and when air does flow, the foam ball is lifted out of the way. This vent seems like a good idea, however it needs considerable airflow to keep the foam ball aloft, and if used on a dryer vent, lint tends to build-up on the enclosure. It is supposedly airtight, but the foam ball never quite moves as seamlessly as it should in its enclosure, meaning that there are gaps in the seal. Fluctuations in the air being expelled cause the ball to quiver in its enclosure, causing an annoying rhythmic sound – dispelling any notion that the device is noiseless. I found over the intervening 10 years that the airflow from bathroom fans (which is way lower than that of a dryer) is reduced because of the foam ball set-up. Lastly, the information on their website suggest the vent cover is attractive, yes it has nice curves, but it tends to create a series of “bumps” on the side of the house. It was a good choice, for all the solutions available at the time. Home Depot use to carry them, but now they seem to have disappeared from the market.


Fig. 1: The EcoVent from the outside and the inside

About a year ago, I swapped the dryer vent out with an all metal vent, like the one shown in Fig.2. I have a similar one on my range-hood and it seems to work well, so I assumed it would work well on the dryer. The design touts a 100% gasket seal, airtight construction, and a weighted damper to prevent back-draft. Due to the warm air expelled by the dryer, the gasket seal continuously fell off. Worse though, the opening has a wire mesh cover, which is a honey-trap for lint. Lint also becomes caked on the inner walls of the vent.


Fig 2: The metal vent, with lint build-up.

So, looking for a new vent cover, I came across this simple design, the DryerWallVent. The Dryer Wall Vent (DWV) has an extremely low profile, is made of galvanized steel, and wait for it – it comes in more than one colour: tan, brown and white. So aesthetically, it is a great looking vent. It also has unrestricted airflow. Now it doesn’t prevent backdraft completely, but the vent should have some form of backdraft preventer inside the duct (see next post). The integral magnets prevent pests from gaining access and negative pressure flapping.


Fig 3: The Dryer Wall Vent package

The benefits? It’s incredibly simple, and it works. There is nothing restricting air flow, so the number of cubic feet per minute for the particular device in question is not restricted. When there is no airflow, the cover closes the vent off. It doesn’t flap in the wind.

Installation is incredibly easy. As I was retrofitting vents in a house that’s nearly 90 years old, I also opted for the 1″ offset base (AZEK solid cellular PVC mounting block). While technically it is suppose to help with offsetting a vent where there is siding, I used the base to make installing the vent over holes which weren’t perfect to begin with. The example shown below is the retrofit of my basement bathroom fan vent (with an integral butterfly damper). The pipe is slightly oval in shape due to a misshapen hole.


Fig 4: Retrofit hole in wall, and addition of PVC mounting block.

Once the PVC block is mounted, it takes about a minute to attach the vent itself, using four holes on the inside of the vent. I attached it using stainless steel screws. Notice there is a gap between the vent and the ducting in the photo below. I merely used aluminum ducting tape to create a seal between the two. Below you can see the DWV in action. To finish it off I caulked between the cover and the PVC block, and the block and the wall.


Fig. 5: FiDryer Wall Vent attached to PVC block, and in action.

The company also carries an excellent range of dryer-boxes and other accessories for venting. To date I have installed two vents, one on the dryer, the second on one of the bathrooms. Still waiting to find the time to do the second floor bathroom (largely because it involves siding).


One thought on “Needing to vent

  1. Rick Harpenau says:

    Very detailed article Michael. Nice of you to take the time to educate others on your findings. Efficiency, fire prevention and a likely non-deteriorating replacement vent. Good stuff.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s